Solutions of a Kuramoto Model of Mutually

نویسنده

  • WILLIAM C. TROY
چکیده

We investigate existence and exact multiplicity of phase-locked solutions of a Ku7 ramoto system of coupled oscillators. Under general assumptions on the form of frequency distri8 bution, we derive new, easily verified criteria which guarantee that either (i) exactly one solution 9 exists, or (ii) exactly two solutions coexist over an entire interval of values of the key parameter γ. 10 We illustrate our results with an example in which each of these possibilities occurs. Problems for 11 future research are suggested. 12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Existence and Exact Multiplicity of Phaselocked Solutions of a Kuramoto Model of Mutually Coupled Oscillators

We investigate existence and exact multiplicity of phase-locked solutions of an integro-differential equation derived from a Kuramoto system of coupled oscillators. Under general assumptions on the form of frequency distribution, we derive new, easily verified criteria which guarantee that either (i) exactly one solution exists, or (ii) exactly two solutions coexist over an entire interval of v...

متن کامل

Non-Vanishing Profiles for the Kuramoto-Sivashinsky Equation on the Infinite Line

We study the Kuramoto-Sivashinsky equation on the infinite line with initial conditions having arbitrarily large limits ±Y at x = ±∞. We show that the solutions have the same limits for all positive times. This implies that an attractor for this equation cannot be defined in L∞. To prove this, we consider profiles with limits at x = ±∞, and show that initial conditions L-close to such profiles ...

متن کامل

همگام‌سازی در مدل کوراموتو با نیروی وابسته به زمان در شبکه‌های پیچیده

In this paper, a generalization of the Kuramoto model is introduced by explicit consideration of deterministically time-varying periodic external force. In this model, the oscillator's natural frequencies and amplitude of collective oscillations are influenced by external forces with constant or random strengths. Then, the synchronization behavior of forced Kuramoto model is studied in some com...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015